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Siloxane Based Engineering Materials —
Complex Materials with Complex Aging Behaviors

Aging and
degradation
mechanisms

operate over a
broad range of
size scales
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Building Model Networks to Study Aging and

Degradation
By reproducing basic structural mgtifs individually, we can synthesize practical
physical model networks. % % % g
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Pyrolysis-Gas Chromatography/Mass
Spectrometry

Interrogative thermal analysis of siloxane network architecture
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Small sample size Versatile probe designs: Cryo-GC/MS:
(0.05mg): «  ‘low & slow’ out-gassing - High sensitivity
« Non-diffusion » thermal degradation » Efficient separation
limited regime

 broad mass detection
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What Information can Py-GCMS provide?
Pyrolysis-evolved gas analysis (Py-EGA)

(20 C/min) with GC column in a non-eluting mode, Carbon NT/PDMS

composites
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What Information can Py-GCMS provide?

Ballistic pyrolytic analysis

(1000 C/min) with GC column in an eluting mode
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Thermal Degradation in Siloxane Networks
Does network structure influence degradation chemistry?
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, Alviso CT, and Maxwell, RS.” Journal of Inorganic and
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Analytical Thermal Analysis of Siloxane Networks
How does the network structure affect the mechanisms of degradation?

Studied Architectures: ] /SI\O
* Mono-modal ~] \S! li _—
* Bi-Modal g : / o .
* Free-chain end systems 2
» Above and below * sl

entanglement 20
« (liquid precursors) 10

Blin. 1320in. Mono1 Monc 2 Mono3 Monod4 Mono 5 Mono 6
Sample

1 Lewicki JP, Mayer, BP, Alviso CT, and Maxwell, RS.” Journal of Inorganic and Organometallic Polymers and Materials (2012) 22:636-645).
2) Lewicki JP, Liggat JJ and Patel M. Polymer Degradation and Stability 2009, 94, 1548-1557.
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Quantifying Degradation Chemistry as a function of Network
Architecture — Analytical Pyrolysis of Model Networks

The thermodynamic
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Lewicki JP, Mayer, BP, Alviso CT, and Maxwell, RS.” Journal of Inorganic and Organometallic Polymers and Materials
(2012) 22:636-645).

Quantifiable relationships exist between basic network architectures and the distributions of

degradation derived species in PDMS networks.



Mechanistic Interpretation
Why are specific architectures altering the product profile?

= Qur analysis suggests that at shorter chain lengths/high x-link densities larger cyclics
are favored. However at low x-link densities and long chain lengths smaller cyclics
dominate

A) Short chai - The additional constraint of
h.)gh )?.“ni jlennss,t ’% high x-link density networks
’ Q} makes the formation of
7T = - larger cyclics somewhat
- o= o '&3 = T

more conformationaly
+ Inlow x-link density systems above
entanglement random coil behavior
dominates and the majority of a chain
does not ‘see’ a x-link site, the main
driver is now thermodynamics and
small cyclic formation dominates

favorable
B) long chains low
X-link density

Lawrence Livermore National Laboratory LLNL-PRES o000



Application to Engineering Silicones
Can we ‘Fingerprint’ real world materials as a function of
degradation chemistry?
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Lewicki, JP, Albo RLF, Alviso, CT and Maxwell, RS. “Pyrolysis-gas chromatography/mass spectrometry for the forensic
fingerprinting of silicone engineering elastomers” Journal of Analytical and Applied Pyrolysis (accepted)
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Application to Engineering Silicones
Global groupings are relatable to mechanistic changes arising from the
materials unique network structure

Phenylated
Siloxanes

ScoresonPC 2 (18.14%)

Small
Silanols

antion Time (min)

- As with the model systems, architectural features such as phenyl free chain ends or high x-
link densities ‘skew’ the profile of minor degradation products providing a fingerprint

Lewicki, JP, Albo RLF, Alviso, CT and Maxwell, RS. “Pyrolysis-gas chromatography/mass spectrometry for the forensic
fingerprinting of silicone engineering elastomers” Journal of Analytical and Applied Pyrolysis (accepted, in press)
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In summary

= The synthesis of well defined end-linked model
PDMS networks allows us to decouple and
investigate the effects of individual architectural
motifs on the properties of a elastomer system

= X-link density, chain length, modality and level of
FCE’s all influence the degradation chemistry of a
silicone material

= Here we have demonstrated the utility of
Interrogative thermal analytical analysis
methodologies for the study of otherwise intractable
materials

Lawrence Livermore National Laboratory LANLPRES oo P



= Thank you.

uestions?

Lawrence Livermore National Laboratory LLNL-PRES 0000



Backups
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Multivariate Statistical Analysis

COMPLEX = scale, similarity, etc.

Examples of variables (n): Pressure, temperature, absorbance, intensity, etc.
Examples of samples (m): Data samples at specific time points, # of samples taken in a study.

Variables (n)
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Principle

component
analysis

Small number of new variables or
“components” that maintain structure
of the data (i.e., the basic information)
but that can better capture the data’s
variance.

These components give information on:
-How samples are (or aren’t) related to
one another

-The degree to which variables
influence the overall structure of the
data.

16
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The key is dimensional reduction

Ex.: Elliptically distributed x-y-z data. Component 1

Variable 3

Component 2

Variable 1 Variable 2

PCA can also identify outliers and
discriminate between outliers within the
model and outside the model.

Lawrence Livermore National Laboratory

Principle Component 1:
- Accounts for the largest variance
(spread) in the data.

Principle Component 2:
-Orthogonal to PC1, accounts for next
largest variance.

Principle Component 3:

-Direction forced by # of variables (3)
-Not necessary!!! — little variance in last
remaining new dimension

Dimension Reduction by discarding
unnecessary components...
...unimportant ‘variables’
...spectral noise
...etc.

17
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We can then examine the relevant variation in the data
in straightforward manner

Scores describe the relationship of the Loadings identify the variables that

samples — how the samples group to (or contribute to the grouping and/or
separate from) each other. separation.
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BDS measurement of PDMS cure in real time
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Practical Considerations — Obtaining a network structure
that is close to ‘ideal’ can be challenging

Purity & polydispersity of
the starting materials
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Unwanted side reactions

CH,

Sn'[0,C(C,H)CH(CH,)CH], 20 Rsn(nioHx + Ho

CH,

Tin(ll)ethylhexanoate Active catalyst
o i
lCH3 |CH3 ICHB Ethylhexanoic acid
HO—Si—O{—Si-OSi—OH " si-0-PDMs-0-si0 __,OSFOPPMS-O-SF
I I | # 4 SIi[O(CH,),CH,], = Ssic
CHy L CHy 1 CHy # /" 0Si-0-PDMS-O-Si-

-Si-O-PDMS-0-SiO
Crosslinked PDMS

Tetrapropylorthosilicate ::

Hydroxy-terminated |
£ J . (TPOS) crosslinker

PDMS

+

CH
~
o™~ QCH

Complex cure kinetics

Ti*C) LOG.[ISCOSITY) LOG, [RESIETIVITY)

CH3 x4

P~ iscosmy
- ; TEMPERATURE

REFISTMITY
[ION WIS OSITY)

CP4)
| END OF CURE
| | {USER DEEINED SLOPE)
: P3|
IMFLECTION FOiNT
[MAXIMUM SUOFE]
!

T EPE) |

H [ P MINIMIUR YIS COEITY
! ! | [ZERO ELOPE)] |
2 [ i i

o LA iz 2 4 TIME

20
LLNL-PRES-x00000¢



Optimizing Model Networks - Equilibrium solvent uptake measurements
provide a measure of x-link density and residual sol. fraction
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Spectroscopic Methods for Assessing Network Ideality — Solid State '"H NMR

TH MAS - Can directly observe Magic Sandwich Echo allows protons
the excesses _of functional associated with regions of differing
groups in partially gelled systems mobility to be assessed
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The progress of a structure towards a homogenous, ordered network can therefore be

followed using convenient, non-invasive and easy to implement solid state NMR
methodologies




Model Behavior — Characterization tools for investigating
polymer physics

7 .
- . Water sorption
oid occupation . . . )
i sf o worer studies yield insight
: into the dynamics
— Isotherm Fit .
. 2 of siloxane
Henry's Law Mode
__ Langmuir Mode 1 netWOrkS
5 —_ Pooling Mode 0
;’ 0.9
Ea 0.7 * In contrast to commercial and end-use
E’ , - formulations, the uptake behavior of the
5 3 LLNL’s M97 optimized model systems is linear and single
5 & component.
g B —
o 05, Simple network Residual functionality and void volume in
cupation Sylgard-184 and the LLNL end-use formulation
1 Sylgard 184 0.4 . (M97) lead to significant Langmuir and pooling
sorption modes — absent in the model system.
o nomodal Model Network 02

0 01 02 03 04 05 0.6 0.7 08 039 In the single component Henrys law behavior of
Water Activity 1 the model network, we are observing the
0 02 04 06 08 fundamental sorption behavior of the fully dense
Water Activity

network
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Reverse Engineering — Using well defined model networks as our
yard-stick can we develop methodologies to back out structural
information in the solid state?

10{ ——68K Mono 016 —wp_t000 %]
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Mayer, Lewicki ,Weisgraber et al. MACROMOLECULES 44 8106 2011

- =

Multiple qguantum NMR yield NMR derived
distributions of MW through <DQ> - the residual
dipolar coupling constant. MQ NMR is also
sensitive to chain entanglements and M,

Basic T, measurements
have been shown to be

sensitive network changes
in the solid state

Solid state NMR can be tasked as a powerful tool for the analysis of otherwise intractable
polymeric network materials



